Abstract
Displacement plays a vital role in dam safety monitoring data, which adequately responds to security risks such as the flood water pressure, extreme temperature, structure deterioration, and bottom bedrock damage. To make accurate predictions, former researchers established various models. However, these models’ input variables cannot efficiently reflect the delays between the external environment and displacement. Therefore, a long short‐term memory (LSTM) model is proposed to make full use of the historical data to reflect the delays. Furthermore, the LSTM model is improved to optimize the performance by making variables more physically reasonable. Finally, a real‐world radial displacement dataset is used to compare the performance of LSTM models, multiple linear regression (MLR), multilayer perceptron (MLP) neural networks, support vector machine (SVM), and boosted regression tree (BRT). The results indicate that (1) the LSTM models can efficiently reflect the delays and make the variables selection more convenient and (2) the improved LSTM model achieves the best performance by optimizing the input form and network structure based on a clearer physical meaning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.