Abstract

The use of the lattice Boltzmann method in computational fluid dynamics has been steadily increasing. The highly local nature of lattice Boltzmann computations have allowed for easy cache optimization and parallelization. This bestows the lattice Boltzmann method with considerable superiority in computational performance over traditional finite difference methods for solving unsteady flow problems. When solving steady flow problems, the explicit nature of the lattice Boltzmann discretization limits the time step size. The time step size is limited by the Courant-Friedrichs-Lewy (CFL) condition and local gradients in the solution, the latter limitation being more extreme. This paper describes a novel explicit discretization for the lattice Boltzmann method that can perform simulations with larger time step sizes. The new algorithm is applid to the steady Burger’s equation, uux = μ(uxx + uyy), which is a nonlinear partial differential equation containing both convection and diffusion terms. A comparison between the original lattice Boltzmann method and the new algorithm is performed with regard to time for computation and accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call