Abstract

ABSTRACTThe multi‐atlas patch‐based label fusion (LF) method mainly focuses on the measurement of the patch similarity which is the comparison between the atlas patch and the target patch. To enhance the LF performance, the distribution probability about the target can be used during the LF process. Hence, we consider two LF schemes: in the first scheme, we keep the results of the interpolation so that we can obtain the labels of the atlas with discrete values (between 0 and 1) instead of binary values in the label propagation. In doing so, each atlas can be treated as a probability atlas. Second, we introduce the distribution probability of the tissue (to be segmented) in the sparse patch‐based LF process. Based on the probability of the tissue and sparse patch‐based representation, we propose three different LF methods which are called LF‐Method‐1, LF‐Method‐2, and LF‐Method‐3. In addition, an automated estimation method about the distribution probability of the tissue is also proposed. To evaluate the accuracy of our proposed LF methods, the methods were compared with those of the nonlocal patch‐based LF method (Nonlocal‐PBM), the sparse patch‐based LF method (Sparse‐PBM), majority voting method, similarity and truth estimation for propagated segmentations, and hierarchical multi‐atlas LF with multi‐scale feature representation and label‐specific patch partition (HMAS). Based on our experimental results and quantitative comparison, our methods are promising in the magnetic resonance image segmentation. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 23–32, 2017

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.