Abstract
Reliability analysis with multiple failure modes is needed because more than one failure mode exists in many engineering applications. Kriging-based surrogate model is widely adopted for component reliability analysis because of its high computational efficiency. Compared with Kriging-based component reliability analysis, selecting the sample points that affect the system performance is more difficult than that of a single failure mode in system reliability analysis. Therefore, how to select suitable sample points is a key problem in system reliability analysis. Meanwhile, reducing the number of calls to the performance functions is challenging, especially for systems with time-consuming performance functions. In this paper, an improved Kriging-based system reliability analysis approach is proposed based on the two strategies. In strategy 1, the initial sample points are determined by considering only two different cases: (a) the candidate samples are selected from the safe regions only for series systems; (b) the candidate samples are selected from the failure regions only for parallel systems. Therefore, samples having little contributions to the composite performance function are avoided. In strategy 2, the sample points determined in strategy 1 will be further optimized by interpolating. From comparisons with three reported methods in numerical examples, the efficiency and accuracy of the proposed method are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.