Abstract

In order to solve the problem of the low action recognition accuracy of passengers’ unsafe behaviors caused by redundant joints, this study proposes an efficient recognition method based on a Kinect sensor. The method uses the pelvis as the starting point of the vector and high-frequency bone joints as the end point to construct the recognition feature vector. The joint angle difference between actions is obtained by using the cosine law, and the initial test result is converted into action similarity combined with the DTW similarity algorithm. Considering the combination of 3 angle features and 4 joint feature selection methods, 12 combined recognition models are formed. A comparative experiment was carried out to identify five types of unsafe behaviors of metro passengers—punch, one-armed call for help, arms for help, trip forward and trip backwards. The results show that the overall selection of joints has a poor similarity effect and cannot achieve the purpose of recognition. The overall recognition model effect of the local “pelvis divergence method” is higher than that of the local “adjacent joint method”, and the local “pelvis divergence method” has the highest recognition result of the maximum angle difference model, and the recognition results of the five unsafe behaviors are 86.9%, 89.2%, 85.5%, 86.7%, and 88.3%, respectively, and the recognition accuracy of this method is 95.7%, indicating the feasibility of the model. The recognition results are more concentrated and more stable, which significantly improves the recognition rate of metro passengers’ unsafe behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.