Abstract
Manifold learning has become a hot issue in the field of machine learning and data mining. There are some algorithms proposed to extract the intrinsic characteristics of different type of high-dimensional data by performing nonlinear dimensionality reduction, such as ISOMAP, LLE and so on. Most of these algorithms operate in a batch mode and cannot be effectively applied when data are collected sequentially. In this paper, we proposed a new incremental version of ISOMAP which can use the previous computation results as much as possible and effectively update the low dimensional representation of data points as many new samples are accumulated. Experimental results on synthetic data as well as real world images demonstrate that our approaches can construct an accurate low-dimensional representation of the data in an efficient manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.