Abstract

Hybrid is a formal theory implemented in Isabelle/HOL that provides an interface for representing and reasoning about object languages using higher-order abstract syntax (HOAS). This interface is built around an HOAS variable-binding operator that is constructed definitionally from a de Bruijn index representation. In this paper we make a variety of improvements to Hybrid, culminating in an abstract interface that on one hand makes Hybrid a more mathematically satisfactory theory, and on the other hand has important practical benefits. We start with a modification of Hybrid's type of terms that better hides its implementation in terms of de Bruijn indices, by excluding at the type level terms with dangling indices. We present an improved set of definitions, and a series of new lemmas that provide a complete characterization of Hybrid's primitives in terms of properties stated at the HOAS level. Benefits of this new package include a new proof of adequacy and improvements to reasoning about object logics. Such proofs are carried out at the higher level with no involvement of the lower level de Bruijn syntax.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.