Abstract

SummaryParticles suspension is considerably prevalent in petroleum industry and chemical engineering. The efficient and accurate simulation of such a process is always a challenge for both the traditional computational fluid dynamics and lattice Boltzmann method. Immersed moving boundary (IMB) method is promising to resolve this issue by introducing a particle‐fluid interaction term in the standard lattice Boltzmann equation, which allows for the smooth hydrodynamic force calculation even for a large grid size relative to the solid particle. Although the IMB method was proved good for stationary particles, the deviation of hydrodynamic force on moving particles exists. In this work, we reveal the physical origin of this problem first and figure out that the internal fluid effect on the hydrodynamic force calculation is not counted in the previous IMB. An improved immersed moving boundary method is therefore proposed by considering the internal fluid correction, which is easy to implement with the little extra computation cost. A 2D single elliptical particle and a 3D sphere sedimentation in Newtonian fluid is simulated directly for the validation of the corrected model by excellent agreements with the standard data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call