Abstract

The Independent Component Analysis (ICA) is a classical algorithm for exploring statistically independent non-Gaussian signals from multi-dimensional data, which has a wide range of applications in engineering, for instance, the blind source separation. The classical ICA measures the Gaussian characteristic by kurtosis, which has the following two disadvantages. Firstly, the kurtosis relies on the value of samples, and is not robust to outliers. Secondly, the algorithm often falls into local optima. To address these drawbacks, we replace the kurtosis by negative entropy, utilize the simulated annealing algorithm for optimization, and finally propose an improved ICA algorithm. Experimental results demonstrate that the proposed algorithm outperforms the classical ICA in its robustness to outliers and convergent rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.