Abstract

Fracture initiation and propagation in fluid-saturated rocks are controlled by interaction between fluid flow and rock deformation . The description of hydromechanical coupling is essential for modeling the fracture process. In this paper, an improved hydromechanical model is proposed in the framework of the particle flow simulation method. This model provides a better description of hydraulic properties before and after breakage of bonds and can efficiently describe fluid flow through porous rock matrix and along fractures. The efficiency of the proposed model is first assessed by comparisons with analytical solutions and typical experimental evidences. A series of numerical simulations are then realized to investigate effects of some key parameters such as confining stress, fluid injection rate and viscosity on the initiation and propagation of fractures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.