Abstract

Pressure-exchange ejector is a novel equipment to overcome the pressure mismatch in multi-pressure gathering pipeline network. Hydraulic simulation plays an important role in the safety monitoring and operation optimization of gathering pipeline network. However, there is currently no hydraulic simulation model of the gathering pipeline network with the pressure-exchange ejector. This paper proposes a steady-state hydraulic simulation model, which consists of pipeline network structure sub-model, pipeline flow sub-model, and pressure-exchange ejector sub-model. Pipe flow, mass balance and detailed characteristics of pressure-exchange ejector are taken into consideration in the model to determine the unknown pressure and flow parameters. The proposed model is solved by the Newton-Raphson iterative method and validated by experimental and field data. The installation schemes of pressure-ejector in a real-world gas field are determined by scenario analysis to improve gas field production. This study provides an analytical tool for multi-pressure gathering pipeline network and guidance for gas field production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call