Abstract

Summary Hydraulic fracturing has been widely used in stimulating tight carbonate reservoirs to improve oil and gas production. Improving and maintaining the connectivity between the natural and induced microfractures in the far-field and the primary fracture networks are essential to enhancing the well production rate because these natural and induced unpropped microfractures tend to close after the release of hydraulic pressure during production. This paper provides a conceptual approach for an improved hydraulic fracturing treatment to enhance the well productivity by minimizing the closure of the microfractures in tight carbonate reservoirs and enlarging the fracture aperture. The proposed improved fracturing treatment was to use the mixture of the delayed acid-generating materials along with microproppants in the pad/prepad fluids during the engineering process. The microproppants were used to support the opening of natural or newly induced microfractures. The delayed acid-generating materials were used in this strategy to enlarge the flow pathways within microfractures owing to degradation introduced under elevated temperatures and interaction with the calcite formation. The feasibility of the proposed approach is evaluated by a series of the proof-of-concept laboratory coreflood experiments and numerical modeling results. First, one series of experiments (Experiments 1–3) was designed to investigate the depth of the voids on the fracture surface generated by the solid delayed acid-generating materials under different flow rates of the treatment fluids and different temperatures. This set of tests was conducted on a core plug assembly that was composed of half-core Eagle Ford Sample, half-core hastelloy core plug, and a mixture of solid delayed acid-generating materials [polyglycolic acid (PGA)] along with small-sized proppants sandwiched by two half-cores. Surface profilometer was used to quantify the surface-etched profile before and after coreflood experiments. Test results have shown that PGA materials were able to create voids or dimples on the fracture faces by their degradation under elevated temperature and the chemical reaction between the generated weak acid and the calcite-rich formation. The depth of the voids generated is related to the treatment temperature and the flow rate of the treatment fluids. Experiment 4 was conducted using two half-core splits to quantify the improvement factor of the core permeability due to the treatment with mixed sand and PGA materials. Simulations of fluid flow through proppant assembly (inside of the microfractures) using the discrete element method (DEM)–lattice Boltzmann method (LBM) coupling approach for three different scenarios (14 cases in total) were further conducted to evaluate the fracture permeability and conductivity changes under different situations such as various gaps between proppant particulates and different depths of voids generated on fracture faces: (1) fluid flow in a microfracture without proppant, (2) fluid flow in a microfracture with small-sized proppants, and (3) fluid flow in a microfracture supported by small-sized proppants and generated voids on the fracture walls. The simulation results show that with proppant support (Scenario 2), the microfracture permeability can be increased by tens to hundreds of times in comparison to Scenario 1, depending on the gaps between proppant particles. The permeability of proppant-supported microfracture (Scenario 3) can be further enhanced by the cavities created by the reactions between the generated acid and calcite formation. This work provides experimental evidence that using the mixture of the solid delayed acid-generating materials along with microproppants or small-sized proppants in stimulating tight carbonate reservoirs in the pad/prepad fluids during the engineering process may be able to effectively improve and sustain permeability of flow pathways from microfractures (either natural or induced). These findings will be beneficial to the development of an improved hydraulic fracturing treatment for stimulating tight organic-rich carbonate reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call