Abstract
In this paper, we present an improved hybrid optimization algorithm, which was applied to the hard combinatorial optimization problem, the quadratic assignment problem (QAP). This is an extended version of the earlier hybrid heuristic approach proposed by the author. The new algorithm is distinguished for the further exploitation of the idea of hybridization of the well‐known efficient heuristic algorithms, namely, simulated annealing (SA) and tabu search (TS). The important feature of our algorithm is the so‐called “cold restart mechanism”, which is used in order to avoid a possible “stagnation” of the search. This strategy resulted in very good solutions obtained during simulations with a number of the QAP instances (test data). These solutions show that the proposed algorithm outperforms both the “pure” SA/TS algorithms and the earlier author's combined SA and TS algorithm. Key words: hybrid optimization, simulated annealing, tabu search, quadratic assignment problem, simulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.