Abstract

A fractional Fourier transform (FrFT) based estimation method is introduced in this paper to analyze the long range dependence (LRD) in time series. The degree of LRD can be characterized by the Hurst parameter. The FrFT-based estimation of Hurst parameter proposed in this paper can be implemented efficiently allowing very large data set. We used fractional Gaussian noises (FGN) which typically possesses long-range dependence with known Hurst parameters to test the accuracy of the proposed Hurst parameter estimator. For justifying the advantage of the proposed estimator, some other existing Hurst parameter estimation methods, such as wavelet-based method and a global estimator based on dispersional analysis, are compared. The proposed estimator can process the very long experimental time series locally to achieve a reliable estimation of the Hurst parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.