Abstract

Objective: Splinting full-thickness cutaneous wounds in mice has allowed for a humanized model of wound healing. Delineating the epithelial edge and assessing time to closure of these healing wounds via macroscopic visualization have remained a challenge. Approach: Double transgenic mice were created by crossbreeding K14-Cre and ROSAmT/mG reporter mice. Full-thickness excisional wounds were created in K14-Cre/ROSAmT/mG mice (n = 5) and imaged using both normal and fluorescent light on the day of surgery, and every other postoperative day (POD) until wound healing was complete. Ten blinded observers analyzed a series of images from a single representative healing wound, taken using normal or fluorescent light, to decide the POD when healing was complete. K14-Cre/ROSAmT/mG mice (n = 4) were subsequently sacrificed at the four potential days of rated wound closure to accurately determine the histological point of wound closure using microscopic fluorescence imaging. Results: Average time to wound closure was rated significantly longer in the wound series images taken using normal light, compared with fluorescent light (mean POD 13.6 vs. 11.6, *p = 0.008). Fluorescence imaging of histological samples indicated that reepithelialization was complete at 12 days postwounding. Innovation: We describe a novel technique, using double transgenic mice K14-Cre/ROSAmT/mG and fluorescence imaging, to more accurately determine the healing time of wounds in mice upon macroscopic evaluation. Conclusion: The accuracy by which wound healing can be macroscopically determined in vivo in mouse models of wound healing is significantly enhanced using K14-Cre/ROSAmT/mG double transgenic mice and fluorescence imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.