Abstract
In classical harmony search algorithm, only one harmony vector is obtained in each of iteration, which affects its search ability. We propose an improve harmony search algorithm in this paper. In our approach, the number of harmony vectors obtained in each of iteration is equivalent to the population size, and all newly generated harmony vectors are put into the harmony memory array. Then, all harmony vectors are sorted by descending order of the fitness, and the first half individuals are served as the next generation of populations. Experimental results show that our approach is obviously superior to the classical one under the same iteration steps and the same running time, which reveals that our approach can effectively generate the excellent individuals approximating the global optimal solution and enhance the optimization ability of classical harmony search algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.