Abstract
Harmonic resonance endangers seriously safe and reliable operation of power grid and an appropriate resonance harmonic analysis method is of great importance. The traditional mode analysis method is a kind of main method to analyze harmonic resonance of power grid so to obtain various harmonic information such as resonance frequency, maximum excitation node and observation node as well as participation factor. However, its calculation efficiency is lower and has no way to judge accurately the maximum excitation node in the harmonic resonance of the distribution power grid. The improved mode analysis method proposed in this paper combines the frequency spectrum analysis with the traditional mode analysis method, and the condition of whether the harmonic resonance could occur at the determined excitation node at resonance frequency is added. Taking the distribution power grid in Bonan Oil area of Shengli Oilfield as an example, this paper analyzes the harmonic resonance of distribution network by using traditional mode analysis method and improved mode analysis method respectively. By comparing the analysis results of the two methods, the superiority of the improved mode analysis method is verified. The analysis of harmonic resonance of distribution network in Bonan Oil area shows that the improved mode analysis method proposed in this paper can accurately determine the harmonic resonance frequency and the highest excitation node of distribution network, while the traditional mode analysis method could not accurately judge the highest excitation node. In addition, the calculation time of the improved mode analysis method is only 17% of that of the traditional mode analysis method, which greatly improves the analysis efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.