Abstract

Gravitational clustering algorithm (Gravc) is a novel and excellent dynamic clustering algorithm that can accurately cluster complex dataset with arbitrary shape and distribution. However, high time complexity is a key challenge to the gravitational clustering algorithm. To solve this problem, an improved gravitational clustering algorithm based on the local density is proposed in this paper, called FastGravc. The main contributions of this paper are as follows. First of all, a local density-based data compression strategy is designed to reduce the number of data objects and the number of neighbors of each object participating in the gravitational clustering algorithm. Secondly, the traditional gravity model is optimized to adapt to the quality differences of different objects caused by data compression strategy. And then, the improved gravitational clustering algorithm FastGravc is proposed by integrating the above optimization strategies. Finally, extensive experimental results on synthetic and real-world datasets verify the effectiveness and efficiency of FastGravc algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.