Abstract
PurposeThe stress–strain behaviors of rockfill materials in dams are significantly affected by the anisotropy and grain crushing. However, these factors are rarely considered in numerical simulations of high rockfill dams. This study intends to develop a reasonable and practical constitutive model for rockfill materials to overcome the above problems.Design/methodology/approachThe effects of anisotropy and grain crushing are comprehensively considered by the spatial position of the reference state line. After the improved generalized plasticity model for rockfill materials (referred to as the PZR model) is developed and verified by laboratory tests, it is used with the finite element method to simulate the stress–strain behaviors of the Nuozhadu high core rockfill dam.FindingsThe simulated results agree well with the laboratory tests data and the situ monitoring data, verifying the reliability and practicability of the developed PZR model.Originality/valueA new anisotropic state parameter is proposed to reflect the nonmonotonic variation in the strength as the major principal stress direction angle varies. This advantage is verified by the simulation of a set of conventional triaxial tests with different inclination angles of the compaction plane. 2) This is the first time that the elastoplastic model is verified by the situ monitoring data of high core rockfill dams. The numerical simulation results show that the PZR model can well reflect the stress–strain characteristics of rockfill materials in high core rockfill dams and is better than the traditional EB model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.