Abstract
<p>The performance of healthcare systems, particularly regarding disease diagnosis and treatment planning, depends on the segmentation of medical images. Fuzzy c-means (FCM) is one of the most widely used clustering techniques for image segmentation due to its simplicity and effectiveness. FCM, on the other hand, has the disadvantages of being noise-sensitive, quickly settling on local optimal solutions, and being sensitive to initial values. This paper suggests a fuzzy c-means clustering improved with a nature-inspired raindrop optimizer for lesion extraction in brain magnetic resonance (MR) images to get around this constraint. In the preprocessing stage, the possible noises in a digital image, such as speckles, gaussian, etc., are eliminated by a hybrid filter—A combination of Gaussian, mean, and median filters. This paper presents a comparative analysis of FCM clustering and FCM-raindrop optimization (FCM-RO) approach. The algorithm performance is evaluated for images subjected to various possible noises that may affect an image during transmission and storage. The proposed FCM-RO approach is comparable to other methods now in use. The suggested system detects lesions with a partition coefficient of 0.9505 and a partition entropy of 0.0890. Brain MR images are analyzed using MATLAB software to find and extract malignancies. Image data retrieved from the public data source Kaggle are used to assess the system’s performance.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.