Abstract
An improved fully convolutional network based on post-processing with global variance (GV) equalization and noise-aware training (PN-FCN) for speech enhancement model is proposed. It aims at reducing the complexity of the speech improvement system, and it solves overly smooth speech signal spectrogram problem and poor generalization capability. The PN-FCN is fed with the noisy speech samples augmented with an estimate of the noise. In this way, the PN-FCN uses additional online noise information to better predict the clean speech. Besides, PN-FCN uses the global variance information, which improve the subjective score in a voice conversion task. Finally, the proposed framework adopts FCN, and the number of parameters is one-seventh of deep neural network (DNN). Results of experiments on the Valentini-Botinhaos dataset demonstrate that the proposed framework achieves improvements in both denoising effect and model training speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.