Abstract

This paper proposed an improved full-order sliding-mode observer (IFSMO), applied to a sensorless control system of surface-mounted permanent magnet synchronous motor (SPMSM), to obtain a high-precision rotor speed and position. First, the IFSMO method, which combines the new sliding-mode function with the variable boundary layer function, is presented to suppress the chattering and accelerate the convergence speed of the system. Meanwhile, since the observer has the characteristics of a second-order low-pass filter, the high-frequency noise contained in the estimated back EMF signal can be effectively filtered out without an additional low-pass filter. Then, the proposed PLL is designed to obtain rotor position and speed. Finally, simulations and experiments of the SPMSM system based on the IFSMO method under different working conditions are implemented, which demonstrates the effectiveness of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.