Abstract

An improved full-discretization method (IFDM) based on the golden search is presented in this brief paper to predict stability lobe diagram (SLD). To begin with, the mathematical model of milling dynamics considering the regenerative chatter is expressed as a state space form. With the time delay being separated equally into a limited amount of elements, the time series expression is obtained by interpolating the integral nonhomogeneous term using linear approximation. Then, 2N order algorithm is adopted to resolve the exponential term into a real matrix, which avoids the exponential matrix that has to be calculated each time in scanning the plane comprised of axial cutting depth and spindle speed. Lastly, the golden search instead of traditional sequential search is applied to seek the crucial axial cutting depths corresponding to different spindle speeds, which can improve computational efficiency remarkably. The verifications with two classic benchmark examples demonstrate that the proposed method has higher computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.