Abstract

The distributed permutation flow shop scheduling problem (DPFSP) is one of the hottest issues in the context of economic globalization. In this paper, a Q-learning enhanced fruit fly optimization algorithm (QFOA) is proposed to solve the DPFSP with the goal of minimizing the makespan. First, a hybrid strategy is used to cooperatively initialize the position of the fruit fly in the solution space and the boundary properties are used to improve the operation efficiency of QFOA. Second, the neighborhood structure based on problem knowledge is designed in the smell stage to generate neighborhood solutions, and the Q-learning method is conducive to the selection of high-quality neighborhood structures. Moreover, a local search algorithm based on key factories is designed to improve the solution accuracy by processing sequences of subjobs from key factories. Finally, the proposed QFOA is compared with the state-of-the-art algorithms for solving 720 well-known large-scale benchmark instances. The experimental results demonstrate the most outstanding performance of QFOA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.