Abstract
Detecting side effects of drugs is a fundamental task in drug development. With the expansion of publicly available biomedical data, researchers have proposed many computational methods for predicting drug-side effect associations (DSAs), among which network-based methods attract wide attention in the biomedical field. However, the problem of data scarcity poses a great challenge for existing DSAs prediction models. Although several data augmentation methods have been proposed to address this issue, most of existing methods employ a random way to manipulate the original networks, which ignores the causality of existence of DSAs, leading to the poor performance on the task of DSAs prediction. In this paper, we propose a counterfactual inference-based data augmentation method for improving the performance of the task. First, we construct a heterogeneous information network (HIN) by integrating multiple biomedical data. Based on the community detection on the HIN, a counterfactual inference-based method is designed to derive augmented links, and an augmented HIN is obtained accordingly. Then, a meta-path-based graph neural network is applied to learn high-quality representations of drugs and side effects, on which the predicted DSAs are obtained. Finally, comprehensive experiments are conducted, and the results demonstrate the effectiveness of the proposed counterfactual inference-based data augmentation for the task of DSAs prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.