Abstract
Fish contour extraction from images is the foundation of many fish image applications such as disease early warning and diagnostics, animal behavior, aquatic product processing, etc. In order to improve the accuracy and stability of fish image segmentation, we propose a new fish images segmentation method which is the combination of the K-means clustering segmentation algorithm and mathematical morphology. Firstly, the traditional K-means clustering segmentation algorithm has been improved for fish images. The best number of clusters is determined by the number of gray histogram peaks, and the cluster centers data is filtered by comparing the mean with the threshold decided by Otsu. Secondly, the opening and closing operations of mathematical morphology are used to get the contour of the fish body. The experimental results show that the algorithm realized the separation between the fish image and the background in the condition of complex backgrounds. Compared with Otsu and other segmentation algorithms, our algorithm is more accurate and stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.