Abstract

As an indispensable part of the battery management system, accurately predicting the estimation of the state of charge (SOC) has attracted more attention, which can improve the efficiency of battery use and ensure its safety performance. Taking the ternary lithium battery as the research object, we present an improved forgetting factor recursive least square (IFFRLS) method for parameter identification and a joint unscented particle filter algorithm for SOC estimation. First, take advantage of the particle swarm optimization (PSO) algorithm to select the optimal parameter initial value and forgetting factor value to improve the precision of the FFRLS method. At the same time, make use of the unscented Kalman algorithm (UKF) as the density function of the particle filter algorithm (PF) to form the unscented particle filtering (UPF) algorithm. Then, the IFFRLS method and UPF algorithm are proposed in this paper. The different working conditions results show that the proposed algorithm estimates the SOC with good convergence and high system robustness. The final estimation error of the algorithm is stable at 1.6 %, which is lower than the errors of the currently used EKF algorithm, UKF algorithm and PF algorithm, which provides a reference for future research on lithium-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.