Abstract

The football team training algorithm (FTTA) is a new metaheuristic algorithm that was proposed in 2024. The FTTA has better performance but faces challenges such as poor convergence accuracy and ease of falling into local optimality due to limitations such as referring too much to the optimal individual for updating and insufficient perturbation of the optimal agent. To address these concerns, this paper presents an improved football team training algorithm called IFTTA. To enhance the exploration ability in the collective training phase, this paper proposes the fitness distance-balanced collective training strategy. This enables the players to train more rationally in the collective training phase and balances the exploration and exploitation capabilities of the algorithm. To further perturb the optimal agent in FTTA, a non-monopoly extra training strategy is designed to enhance the ability to get rid of the local optimum. In addition, a population restart strategy is then designed to boost the convergence accuracy and population diversity of the algorithm. In this paper, we validate the performance of IFTTA and FTTA as well as six comparison algorithms in CEC2017 test suites. The experimental results show that IFTTA has strong optimization performance. Moreover, several engineering-constrained optimization problems confirm the potential of IFTTA to solve real-world optimization problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.