Abstract

This paper focus on direct current (DC) filter grounding faults to propose a novel dilated normalized residual convolutional neural network (DRNCNN) fault diagnosis model for high-voltage direct current (HVDC) transmission systems. To address the insufficiency of the traditional model’s receptive field in dealing with high-dimensional and nonlinear data, this paper incorporates dilated convolution and batch normalization (BN), significantly enhancing the CNN’s capability to capture complex spatial features. Furthermore, this paper integrates residual connections and parameter rectified linear units (PReLU) to optimize gradient propagation and mitigate the issue of gradient vanishing during training. These innovative improvements, embodied in the DRNCNN model, substantially increase the accuracy of fault detection, achieving a diagnostic accuracy rate of 99.28%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.