Abstract
In fuzzy C-means (FCM) clustering, each data point belongs to a cluster to a degree specified by a membership grade. FCM partitions a collection of vectors in c fuzzy groups and finds a cluster center in each group such that the dissimilarity measure is minimized. This paper presents a training algorithm for the radial basis function (RBF) network using symmetry-based Fuzzy C-means (SFCM) clustering method which is the modified version of FCM clustering method based on point symmetry distance measure. The training algorithm which uses SFCM clustering method to train the network has a number of advantages such as faster training time, more accurate predictions and reduced network architecture compared to the standard RBF networks. The proposed training algorithm has been implemented in the RBF networks created by the newrb function of MATLAB which uses gradient based iterative method as learning strategy, therefore the new network will undergo a hybrid learning process. The networks called Symmetry-based Fuzzy C-means Clustering–Radial Basis Function Network (SFCM/RBF) has been tested against the standard RBF network and the networks called standard Fuzzy C-means Clustering (FCM)-RBF network (FCM/RBF) in forecasting. The experimental models has been tested on three real world application problems, particularly in Air pollutant problem, Biochemical Oxygen Demand (BOD) problem, and Phytoplankton problem. Keywords: Fuzzy c-means clustering; SFCM; Radial basis function network; point symmetry distance; forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.