Abstract
BackgroundTens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. The use of insecticide-treated textiles is one of the most widespread control measures. This includes bed nets, battle clothing or, more generally, textiles use for clothing. These textiles are generally treated with permethrin as active ingredient, which is dosed after extraction of the active molecule present throughout the fabric (measured in mg permethrin/g of fabric) and does not take the effective concentration on the textile surfaces into account. The objective of this study was to propose an improved dosage method that enables measurement of the bioavailable or effective part of active ingredients on the surface of textile treated with insecticides.MethodsThe proposed method relies on mechanical extraction of active molecules on the surface of the textile in direct contact with either the skin or with the targeted arthropod.ResultsThe results showed that the amount of permethrin measured using the current method is about 200 times higher than the effective surface concentration of the insecticide. In addition, the type of weave or knit influences the effective concentrations of permethrin on the surface of the textile. With the current dosage method, the variation in the concentration of permethrin depending on the type of weave is maximum 8%, whereas with the proposed method, it varies by about 50%. These results were confirmed by bioassays, in which the type of weave significantly affected (p < 10−3) the 100% knockdown time of Anopheles gambiae.ConclusionsThe bioefficacy of insecticide treatments of fabrics is directly correlated with the effective concentration of insecticide on the textile surface, which can be quantified using the method proposed. This improved method could be used to redefine the limits of actual concentrations of active substance after assessment of the bioefficacy of the treatment and the risk to human health. Further, it enables assessments of the kinetics of insecticide migration in the case of long-lasting insecticide treatment.
Highlights
Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide
indoor residual spraying (IRS) consists of spraying wall surfaces, and the World Health Organization (WHO) defined different surface concentrations to be used depending on the insecticides used and the different materials to which it was applied
Many authors [3, 4] who sought to establish a relationship between bioefficacy of treated fabrics and the surface concentration of the insecticide, used a protocol defined by the WHO as a guideline for measuring the activity and chemical composition of nets [5]
Summary
Tens of millions of people live in mosquito-infested regions and controlling mosquito-borne diseases is one of the major interventions aimed at alleviating poverty worldwide. IRS consists of spraying wall surfaces, and the WHO defined different surface concentrations to be used depending on the insecticides used and the different materials to which it was applied. Today, these concentrations are still expressed in mg of active substance per m2 to be sprayed. Some methods were published by the Collaborative International Pesticides Analytical Council (CIPAC) for LLINs (long-lasting insecticidal nets) [6] These methods enable estimation of the total insecticide content (mass concentration) and the results are expressed in grams of active ingredient per gram, or in percent as well as in milligrams of active ingredient per square metre of textile. The following formula is used to obtain the insecticide surface concentration: Surface concentration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.