Abstract

Single-phase generation schemes are widely utilized for harnessing wind power in remote and grid secluded applications. This paper presents a novel control methodology for a three-phase induction machine working as a single-phase dual winding induction generator. Three-phase induction machines providing single-phase output with proper control strategy can be beneficial in grid secluded micro-wind energy conversion systems compared to single-phase induction generators. Three-phase induction machines operating in single-phase mode are mostly excited asymmetrically to provide single-phase power leading to unbalanced current flow in the stator windings causing heating and insulation breakdown. The asymmetrical excitation also initiates torque pulsations which results in additional stress and vibration at the machine shaft and bearings degrading the machine performance. The proposed control is chiefly aimed to minimize this unbalance. The variable excitation required for the proposed generator is provided through a single-phase inverter with photovoltaic panels. The suitability for such a generator along with its control is tested with appropriate simulations and experimental results. The induction generator with the proposed control strategy is expected to be useful in remote and grid isolated households as a standalone source of single-phase electrical power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.