Abstract

Evolutionary multi-objective clustering (EMOC) algorithms have gained popularity recently, as they can obtain a set of clustering solutions in a single run by optimizing multiple objectives. Particularly, in one type of EMOC algorithm, the number of clusters k is taken as one of the multiple objectives to obtain a set of clustering solutions with different k. However, the numbers of clusters k and other objectives are not always in conflict, so it is impossible to obtain the clustering solutions with all different k in a single run. Therefore, evolutionary multi-objective k-clustering (EMO-KC) has recently been proposed to ensure this conflict. However, EMO-KC could not obtain good clustering accuracy on high-dimensional datasets. Moreover, EMO-KC’s validity is not ensured as one of its objectives (SSDexp, which is transformed from the sum of squared distances (SSD)) could not be effectively optimized and it could not avoid invalid solutions in its initialization. In this paper, an improved evolutionary multi-objective clustering algorithm based on autoencoder (AE-IEMOKC) is proposed to improve the accuracy and ensure the validity of EMO-KC. The proposed AE-IEMOKC is established by combining an autoencoder with an improved version of EMO-KC (IEMO-KC) for better accuracy, where IEMO-KC is improved based on EMO-KC by proposing a scaling factor to help effectively optimize the objective of SSDexp and introducing a valid initialization to avoid the invalid solutions. Experimental results on several datasets demonstrate the accuracy and validity of AE-IEMOKC. The results of this paper may provide some useful information for other EMOC algorithms to improve accuracy and convergence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call