Abstract

In dark matter direct detection experiments, neutron is a serious source of background, which can mimic the dark matter-nucleus scattering signals. In this paper, we present an improved evaluation of the neutron background in the PandaX-II dark matter experiment by a novel approach. Instead of fully relying on the Monte Carlo simulation, the overall neutron background is determined from the neutron-induced high energy signals in the data. In addition, the probability of producing a dark-matter-like background per neutron is evaluated with a complete Monte Carlo generator, where the correlated emission of neutron(s) and γ(s) in the (α, n) reactions and spontaneous fissions is taken into consideration. With this method, the neutron backgrounds in the Run 9 (26-ton-day) and Run 10 (28-ton-day) data sets of PandaX-II are estimated to be (0.66±0.24) and (0.47±0.25) events, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.