Abstract

Resource-based water-saving potential has been recognized as the reduction of evapotranspiration and water loss of inefficient irrigation systems. In this paper, an improved evapotranspiration control model is applied to calculate resource-based water-saving potential, considering the influences of effective rainfall (uncontrolled evapotranspiration) and irrigated water (controlled evapotranspiration). Farmland in Baiyangdian Watershed, a highly productive area in northern China, is analyzed to determine the water-saving potential of irrigation processes. The water-saving potential was zero, 163.90 × 106 m3, and 318.24 × 106 m3 in wet, normal, and dry years, respectively, and was greater in years with less rainfall. Under the combined effect of rainfall, crop water consumption, and crop water requirements, the water-saving potential showed obvious temporal and spatial variations. July and August comprised almost 98.6% of the annual potential. In the northeast and southwest corner of the study area, potential approached zero. The potential was 1.53 times greater in the north-central than in the south-central area. The model can furnish the appropriate timing and region to water managers for implementing water-saving strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.