Abstract

In this short note, it is proved that the derivatives of the parametrized univariate Gaussian correlation matrix R_g (θ) = (exp(−θ(x_i − x_j )^2_{i,j} ∈ R^{n×n} are rank-deficient in the limit θ = 0 up to any order m < (n − 1)/2. This result generalizes the rank deficiency theorem for Euclidean distance matrices, which appear as the first-order derivatives of the Gaussian correlation matrices in the limit θ = 0. As a consequence, it is shown that the condition number of R_g(θ) grows at least as fast as 1(/θ^(mˆ +1) for θ → 0, where mˆ is the largest integer such that mˆ < (n − 1)/2. This considerably improves the previously known growth rate estimate of 1/θ^22 for the so-called Gaussian condition number anomaly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.