Abstract

Single-mode linear ultrasonic motors (SMLUMs) have the advantages of excellent accuracy, long travel distance, single vibration mode and simple driving scheme, which have been applied in precision positioning and micro/nano manipulation actuators. However, it is still challenging to accurately and efficiently analyze such motors due to their complicated electro-mechanical coupling behaviors under contact-based operating conditions. This paper proposed an improved equivalent circuit model for a single-mode linear ultrasonic motor considering the real contact-based operating conditions, where a new actuation mode of the V-shape transducer is adopted. The electro-mechanical coupling characteristics of the stator under contact-based boundary condition is modeled by a modified admittance-type equivalent circuit, where the variable contact stiffness and loss are characterized between the stator and the mover. The friction drive mechanism is modeled by a thyristor rectifying circuit to characterize the intermittent actuation characteristics, and the nonlinear relationship between the motor characteristics and the contact-based operating conditions is initially characterized from the circuit viewpoint. The merits and the applications of the circuit-based model are exemplified by parameter identification and modification, losses segregation, admittance characteristics analysis and output and control characteristics evaluation for such SMLUMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call