Abstract

The derivation of the equivalent circuit for a single-sided linear induction motor (SLIM) is not straightforward, particularly if it includes longitudinal end effects from the cut-open primary magnetic path, transversal edge effects from the differing widths between the primary lamination and secondary sheet, and half-filled primary slots. This paper proposes an improved series equivalent circuit for this machine. The longitudinal end effects are estimated using three different impedances representing the normal, forward, and backward flux density waves in the air gap, whose two boundary conditions are deduced by introducing the conception of magnetic barrier surface. The transversal edge effects are accounted for by correction coefficient Kt and air-gap flux density correction coefficient Kb. Using the series circuit, the performance of the SLIM was assessed in a similar manner to a rotating induction machine. A 4-kW SLIM prototype was tested, which validated the simulation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.