Abstract
In this paper, the effects of different surface properties on the growth of frost layer were numerically studied from the mesoscopic scale using the lattice Boltzmann method. The improved enthalpy method and nucleation probability model were combined to establish a three-dimensional lattice Boltzmann model based on nucleation probability theory. The model was used to carry out numerical research on frost layer formation and growth process on cold wall surface. The model could not only simulate the gradual densification and thickening process of frost layer growth from the macro scale, but also describe the change process of the frost layer structure caused by ice branch growth on the micro scale. The average thickness, average density and the amount of the frost layer could be obtained. Through this model, the temporal and spatial evolution characteristics of the topography of the frost layer were obtained. The model was used to analyze the effects of cold wall surface temperature, relative humidity and cold surface wettability on the frosting characteristics. The average thickness, frost average density, frost quality and average solid volume fraction of frost at different times were obtained by calculation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.