Abstract

Abstract Land surface air temperatures (LSAT) inferred from weather station data differ among major research groups. The estimate by NOAA’s monthly Global Historical Climatology Network (GHCNm) averages 0.02°C cooler between 1880 and 1940 than Berkeley Earth’s and 0.14°C cooler than the Climate Research Unit estimates. Such systematic offsets can arise from differences in how poorly documented changes in measurement characteristics are detected and adjusted. Building upon an existing pairwise homogenization algorithm used in generating the fourth version of NOAA’s GHCNm(V4), PHA0, we propose two revisions to account for autocorrelation in climate variables. One version, PHA1, makes minimal modification to PHA0 by extending the threshold used in breakpoint detection to be a function of LSAT autocorrelation. The other version, PHA2, uses penalized likelihood to detect breakpoints through optimizing a model-selection problem globally. To facilitate efficient optimization for series with more than 1000 time steps, a multiparent genetic algorithm is proposed for PHA2. Tests on synthetic data generated by adding breakpoints to CMIP6 simulations and realizations from a Gaussian process indicate that PHA1 and PHA2 both similarly outperform PHA0 in recovering accurate climatic trends. Applied to unhomogenized GHCNmV4, both revised algorithms detect breakpoints that correspond with available station metadata. Uncertainties are estimated by perturbing algorithmic parameters, and an ensemble is constructed by pooling 50 PHA1- and 50 PHA2-based members. The continental-mean warming in this new ensemble is consistent with that of Berkeley Earth, despite using different homogenization approaches. Relative to unhomogenized data, our homogenization increases the 1880–2022 trend by 0.16 [0.12, 0.19]°C century−1 (95% confidence interval), leading to continental-mean warming of 1.65 [1.62, 1.69]°C over 2010–22 relative to 1880–1900. Significance Statement Accurately correcting for systematic errors in observational records of land surface air temperature (LSAT) is critical for quantifying historical warming. Existing LSAT estimates are subject to systematic offsets associated with processes including changes in instrumentation and station movement. This study improves a pairwise homogenization algorithm by accounting for the fact that climate signals are correlated over time. The revised algorithms outperform the original in identifying discontinuities and recovering accurate warming trends. Applied to monthly station temperatures, the revised algorithms adjust trends in continental mean LSAT since the 1880s to be 0.16°C century−1 greater relative to raw data. Our estimate is most consistent with that from Berkeley Earth and indicates lesser and greater warming than estimates from NOAA and the Met Office, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.