Abstract

This paper presents an improved magnetic reluctivity model for vector magnetic properties of anisotropic electrical steel sheet based on Chua-type model using Fourier series expansion of measured <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> waveforms in the viewpoint of engineering application. In the modeling, B-spline surface interpolation is adopted to obtain smooth approximation of measured data. The accuracy of the proposed magnetic reluctivity model is verified by comparing its modeling results with experimentally measured <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">B-</i> and <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> -waveforms with 30 PG110 grain-oriented silicon steel sheet. The nonlinear finite element (FE) formulation is also derived to incorporate the proposed reluctivity model, and applied to magnetic field analysis of a single phase transformer core model. By comparing the numerical results with experimental ones, the effectiveness of the reluctivity model and FE formulation is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.