Abstract

A new empirical large-signal model for high-power GaN HEMTs utilizing an improved drain current (Ids) model is presented. The new Ids formulation accurately predicts the asymmetric bell-shaped transconductance (gm) over a large drain-source bias range which is crucial in modeling high-power GaN HEMTs. A method of utilizing a combination of pulsed-gate (PGIV) and pulsed-gate-and-drain (PIV) IV measurements to characterize the dispersive behavior of GaN HEMT nonlinear Ids characteristics is developed. Dispersion due to self heating is modeled by modifying Ids parameters as a function of the temperature change and drain-source bias. Dispersion due to trapping is modeled using an effective gate-source voltage model. Accurate predictions of the RF small-signal and large-signal performance are demonstrated for two quiescent biases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.