Abstract

An improved rough surface contact model is proposed accounting for bulk substrate deformation and asperity interaction. The asperity contact stiffness is based on Hertzian solution for spherical contact, and the bulk substrate stiffness on the solution of Hertzian pressure on a circular region of the elastic half-space. The contact behavior of a single asperity composed of hemi-spherical asperity deformation as well as bulk substrate deformation is calculated by introducing the concept of spring-in-series. Based on the single asperity model, the contact stiffness for the rough surface is calculated including the effect of asperity interaction. Analytical simulation results using the proposed rough surface contact model were compared with the CEB model and experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.