Abstract

A new multi-valley effective-mass-theory (EMT) equation is derived for the phosphorus doped in silicon. This equation admits solutions which agree with the measured ground state energy and the square modulus of the ground-state wavefunction |ΨA1(0)|2 at the donor site accurately. This avoids the use of the so-called “central-cell correction” approximation method to calculate the hyperfine constant at the donor site. Furthermore, the energy levels for the upper lying states of T2 and E can also be predicted relatively accurately. The newly derived EMT equation has applications in the characterization of semiconductor or spintronics devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call