Abstract

This paper focuses on the distributed data aggregation collision-free scheduling problem, which is one of very important issues in wireless sensor networks. Bo et al. (Proc. IEEE INFOCOM, 2009) proposed an approximate distributed algorithm for the problem and Xu et al. (Proc. ACM FOWANC, 2009) proposed a centralized algorithm and its distributed implementation to generate a collision-free scheduling for the problem, which are the only two existing distributed algorithms. Unfortunately, there are a few mistakes in their performance analysis in Bo et al. (Proc. IEEE INFOCOM, 2009), and the distributed algorithm can not get the same latency as the centralized algorithm because the distributed implementation was not an accurate implementation of the centralized algorithm (Xu et al. in Proc. ACM FOWANC, 2009). According to those, we propose an improved distributed algorithm to generate a collision-free schedule for data aggregation in wireless sensor networks. Not an arbitrary tree in Bo et al. (Proc. IEEE INFOCOM, 2009) but a breadth first search tree (BFS) rooted at the sink node is adopted, the bounded latency 61R+5Δ?67 of the schedule is obtained, where R is the radius of the network with respect to the sink node and Δ is the maximum node degree. We also correct the latency bound of the schedule in Bo et al. (Proc. IEEE INFOCOM, 2009) as 61D+5Δ?67, where D is a diameter of the network and prove that our algorithm is more efficient than the algorithm (Bo et al. in Proc. IEEE INFOCOM, 2009). We also give a latency bound for the distributed implementation in Xu et al. (Proc. ACM FOWANC, 2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.