Abstract

The Maximal Independent Set (MIS) problem is one of the basics in the study of locality in distributed graph algorithms. This paper presents an extremely simple randomized algorithm providing a near-optimal local complexity for this problem, which incidentally, when combined with some recent techniques, also leads to a near-optimal global complexity. Classical algorithms of Luby [STOC'85] and Alon, Babai and Itai [JALG'86] provide the global complexity guarantee that, with high probability, all nodes terminate after $O(\log n)$ rounds. In contrast, our initial focus is on the local complexity, and our main contribution is to provide a very simple algorithm guaranteeing that each particular node $v$ terminates after $O(\log \mathsf{deg}(v)+\log 1/\epsilon)$ rounds, with probability at least $1-\epsilon$. The guarantee holds even if the randomness outside $2$-hops neighborhood of $v$ is determined adversarially. This degree-dependency is optimal, due to a lower bound of Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Interestingly, this local complexity smoothly transitions to a global complexity: by adding techniques of Barenboim, Elkin, Pettie, and Schneider [FOCS'12, arXiv: 1202.1983v3], we get a randomized MIS algorithm with a high probability global complexity of $O(\log \Delta) + 2^{O(\sqrt{\log \log n})}$, where $\Delta$ denotes the maximum degree. This improves over the $O(\log^2 \Delta) + 2^{O(\sqrt{\log \log n})}$ result of Barenboim et al., and gets close to the $\Omega(\min\{\log \Delta, \sqrt{\log n}\})$ lower bound of Kuhn et al. Corollaries include improved algorithms for MIS in graphs of upper-bounded arboricity, or lower-bounded girth, for Ruling Sets, for MIS in the Local Computation Algorithms (LCA) model, and a faster distributed algorithm for the Lov\'asz Local Lemma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call