Abstract
AbstractA new improved discrete Kirchhoff quadrilateral element based on the third‐order zigzag theory is developed for the static analysis of composite and sandwich plates. The element has seven degrees of freedom per node, namely, the three displacements, two rotations and two transverse shear strain components at the mid‐surface. The usual requirement of C1 continuity of interpolation functions of the deflection in the third‐order zigzag theory is circumvented by employing the improved discrete Kirchhoff constraint technique. The element is free from the shear locking. The finite element formulation and the computer program are validated by comparing the results for simply supported plate with the analytical Navier solution of the zigzag theory. Comparison of the present results with those using other available elements based on zigzag theories for composite and sandwich plates establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed by comparing the finite element results of the square all‐round clamped composite plates with the converged three‐dimensional finite element solution obtained using ABAQUS. The comparisons also establish the superiority of the zigzag theory over the smeared third‐order theory having the same number of degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.