Abstract

In order to enhance the synchronization of welding robot arms and improve welding quality, this study proposes a fuzzy PID-based improved deviation coupling multi-axis synchronous control method. Firstly, in response to the intricacies inherent in the compensation mechanism of the deviation coupling control structure and the substantial volume of system computation, the integration of average speed and sub-average speed is proposed to optimize the speed compensator. This integration aims to mitigate speed synchronization errors, minimize synchronization adjustment time, and elevate overall system synchronization performance. Moreover, the fuzzy PID algorithm is employed to design the controller to realize the single-motor adaptive control, leading to improvement in both system stability and dynamic response performance. Finally, a simulation model for six-axis synchronization control and an experimental platform were developed. Both simulation and experimental results demonstrate that the improved deviation coupling control method exhibits superior synchronization performance. The proposed multi-axis synchronous control method effectively heightens the synchronous performance of the six-degrees-of-freedom robotic arm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.