Abstract

This paper proposes an improved design methodology of the double-sided LC -compensated capacitive power transfer (CPT) system considering the inductance detuning. Compared to the perfect-resonant scenario, this paper shows that the inductance detuning has the benefit to achieve the soft-switching condition for the CPT system, and the output current and internal voltage stresses can also be maintained within the desired range. The contributions of this paper are summarized in three parts. First, it analyzes the impacts of the inductance variations on the system frequency property, including the input current, output current, and internal capacitor voltage stresses. Second, it proposes three principles to detune the inductances as the methodology to design a CPT system. Third, a prototype is implemented, which achieves 368.5 W power transfer across a 400 mm × 400 mm × 4 mm glass layer with 91.8% dc–dc efficiency. Experimental results validate that the proposed design principles are satisfied, showing that the output current is within the desired range, the input soft-switching condition is achieved, and the internal voltage stresses are within the safety limit. Moreover, the efficiency and frequency properties are also validated by the experimental results, showing a wide power range of the high-efficiency operation (higher than 90%) and a wide frequency bandwidth of the soft-switching operation (from 0.96 to 1.12 MHz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.