Abstract
As a clean unconventional energy source, shale gas reservoirs are increasingly important globally. Accurate prediction methods for shale gas production capacity can bring significant economic benefits by reducing construction and operating costs. Decline curve analysis (DCA) is an efficient method that uses mathematical formulas to describe production trends with minimal reliance on geological or engineering parameters. However, traditional DCA models often fail to capture the complex production dynamics of shale gas wells, especially in complex environments. To overcome these limitations, this study proposes an Improved DCA method that integrates multiple base empirical DCA models through ensemble learning. By combining the strengths of individual models, it offers a more robust and accurate prediction framework. We evaluated this method using data from 22 shale gas wells in region L, China, comparing it to six traditional DCA models, including Arps and the Logistic Growth Model (LGM). The results show that the Improved DCA model achieved superior performance—with an mean absolute error (MAE) of 0.0660, an mean squared error (MSE) of 0.0272, and an R2 value of 0.9882—and exhibited greater stability across various samples and conditions. This method provides a reliable tool for long-term production forecasting and optimization without extensive geological or engineering information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.